Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 422
Filtrar
1.
Molecules ; 26(9)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066831

RESUMO

The synthesis of natural products by E. coli is a challenging alternative method of environmentally friendly minimization of hazardous waste. Here, we establish a recombinant E. coli capable of transforming sodium benzoate into 2,4,6-trihydroxybenzophenone (2,4,6-TriHB), the intermediate of benzophenones and xanthones derivatives, based on the coexpression of benzoate-CoA ligase from Rhodopseudomonas palustris (BadA) and benzophenone synthase from Garcinia mangostana (GmBPS). It was found that the engineered E. coli accepted benzoate as the leading substrate for the formation of benzoyl CoA by the function of BadA and subsequently condensed, with the endogenous malonyl CoA by the catalytic function of BPS, into 2,4,6-TriHB. This metabolite was excreted into the culture medium and was detected by the high-resolution LC-ESI-QTOF-MS/MS. The structure was elucidated by in silico tools: Sirius 4.5 combined with CSI FingerID web service. The results suggested the potential of the new artificial pathway in E. coli to successfully catalyze the transformation of sodium benzoate into 2,4,6-TriHB. This system will lead to further syntheses of other benzophenone derivatives via the addition of various genes to catalyze for functional groups.


Assuntos
Benzoatos/metabolismo , Benzofenonas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Metabólica/métodos , Xantonas/metabolismo , Biotransformação , Carbono-Carbono Ligases/metabolismo , Cromatografia Líquida , Coenzima A Ligases/metabolismo , Simulação por Computador , Meios de Cultura , Garcinia mangostana/enzimologia , Garcinia mangostana/genética , Malonil Coenzima A/metabolismo , Plasmídeos/genética , Rodopseudomonas/enzimologia , Rodopseudomonas/genética , Espectrometria de Massas em Tandem
2.
PLoS One ; 16(3): e0247135, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33661900

RESUMO

Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) genes play important roles in CO2 fixation and redox balancing in photosynthetic bacteria. In the present study, the kefir yeast Kluyveromyces marxianus 4G5 was used as host for the transformation of form I and form II RubisCO genes derived from the nonsulfur purple bacterium Rhodopseudomonas palustris using the Promoter-based Gene Assembly and Simultaneous Overexpression (PGASO) method. Hungateiclostridium thermocellum ATCC 27405, a well-known bacterium for its efficient solubilization of recalcitrant lignocellulosic biomass, was used to degrade Napier grass and rice straw to generate soluble fermentable sugars. The resultant Napier grass and rice straw broths were used as growth media for the engineered K. marxianus. In the dual microbial system, H. thermocellum degraded the biomass feedstock to produce both C5 and C6 sugars. As the bacterium only used hexose sugars, the remaining pentose sugars could be metabolized by K. marxianus to produce ethanol. The transformant RubisCO K. marxianus strains grew well in hydrolyzed Napier grass and rice straw broths and produced bioethanol more efficiently than the wild type. Therefore, these engineered K. marxianus strains could be used with H. thermocellum in a bacterium-yeast coculture system for ethanol production directly from biomass feedstocks.


Assuntos
Proteínas de Bactérias , Clostridiales/crescimento & desenvolvimento , Etanol/metabolismo , Kluyveromyces , Microrganismos Geneticamente Modificados , Rodopseudomonas/genética , Ribulose-Bifosfato Carboxilase , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Kluyveromyces/enzimologia , Kluyveromyces/genética , Kluyveromyces/crescimento & desenvolvimento , Microrganismos Geneticamente Modificados/enzimologia , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/crescimento & desenvolvimento , Rodopseudomonas/enzimologia , Ribulose-Bifosfato Carboxilase/biossíntese , Ribulose-Bifosfato Carboxilase/genética
3.
Lett Appl Microbiol ; 73(1): 88-95, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33783839

RESUMO

Coenzyme Q10 (CoQ10 ), a strong antioxidant, is used extensively in food, cosmetic and medicine industries. A natural producer, Rhodopseudomonas palustris, was engineered to overproduce CoQ10 . For increasing the CoQ10 content, crtB gene was deleted to block the carotenoid pathway. crtB gene deletion led to 33% improvement of CoQ10 content over the wild type strain. However, it was found that the yield of hopanoids was also increased by competing for the precursors from carotenoid pathway with CoQ10 pathway. To further increase the CoQ10 content, hopanoid pathway was blocked by deleting shc gene, resulting in R. palustris [Δshc, ΔcrtB] to produce 4·7 mg g-1 DCW CoQ10 , which was 1·2 times higher than the CoQ10 content in the wild type strain. The common strategy of co-expression of rate-limiting enzymes (DXS, DPS and UbiA) was combined with the pathway blocking method resulted in 8·2 mg g-1 DCW of CoQ10 , which was 2·9 times higher than that of wild type strain. The results suggested a synergistic effect among different metabolic engineering strategies. This study demonstrates the potential of R. palustris for CoQ10 production and provides viable strategies to increase CoQ10 titer.


Assuntos
Microbiologia Industrial/métodos , Engenharia Metabólica/métodos , Rodopseudomonas/enzimologia , Rodopseudomonas/genética , Ubiquinona/análogos & derivados , Carotenoides/metabolismo , Enzimas/genética , Ubiquinona/biossíntese
4.
Sheng Wu Gong Cheng Xue Bao ; 37(12): 4314-4328, 2021 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-34984877

RESUMO

5-aminolevulinic acid (5-ALA) plays an important role in the fields of medicine and agriculture. 5-ALA can be produced by engineered Escherichia coli and Corynebacterium glutamicum. We systematically engineered the C4 metabolic pathway of C. glutamicum to further improve its ability to produce 5-ALA. Firstly, the hemA gene encoding 5-ALA synthase (ALAS) from Rhodobacter capsulatus and Rhodopseudomonas palustris were heterologously expressed in C. glutamicum, respectively. The RphemA gene of R. palustris which showed relatively high enzyme activity was selected. Screening of the optimal ribosome binding site sequence RBS5 significantly increased the activity of RphemA. The ALAS activity of the recombinant strain reached (221.87±3.10) U/mg and 5-ALA production increased by 14.3%. Subsequently, knocking out genes encoding α-ketoglutarate dehydrogenase inhibitor protein (odhI) and succinate dehydrogenase (sdhA) increased the flux of succinyl CoA towards the production of 5-ALA. Moreover, inhibiting the expression of hemB by means of sRNA reduced the degradation of 5-ALA, while overexpressing the cysteine/O-acetylserine transporter eamA increased the output efficiency of intracellular 5-ALA. Shake flask fermentation using the engineered strain C. glutamicum 13032/∆odhI/∆sdhA-sRNAhemB- RBS5RphemA-eamA resulted in a yield of 11.90 g/L, which was 57% higher than that of the original strain. Fed-batch fermentation using the engineered strain in a 5 L fermenter produced 25.05 g/L of 5-ALA within 48 h, which is the highest reported-to-date yield of 5-ALA from glucose.


Assuntos
Ácido Aminolevulínico/metabolismo , Corynebacterium glutamicum , Rhodobacter capsulatus , Rodopseudomonas/enzimologia , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Fermentação , Engenharia Metabólica , Rhodobacter capsulatus/enzimologia
5.
FEBS Open Bio ; 11(1): 124-132, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33176055

RESUMO

Cytochromes P450 (CYPs or P450s) comprise a superfamily of heme-containing monooxygenases that are involved in a variety of biological processes. CYPs have broad utilities in industry, but most exhibit low thermostability, limiting their use on an industrial scale. Highly thermostable enzymes can be obtained from thermophiles in geothermal areas, including hot springs, offshore oil-producing wells and volcanoes. Here, we report the identification of a gene encoding for a thermophilic CYP from the Binh Chau hot spring metagenomic database, which was designated as P450-T2. The deduced amino acid sequence showed the highest identity of 73.15% with CYP203A1 of Rhodopseudomonas palustris, supporting that P450-T2 is a member of the CYP203A subfamily. Recombinant protein expression yielded 541 nm. The optimal temperature and pH of P450-T2 were 50 °C and 8.0, respectively. The half-life of P450-T2 was 50.2 min at 50 °C, and its melting temperature was 56.80 ± 0.08 °C. It was found to accept electrons from all tested redox partners systems, with BmCPR-Fdx2 being the most effective partner. Screening for putative substrates revealed binding of phenolic compounds, such as l-mimosine and emodin, suggesting a potential application of this new thermophilic P450 in the production of the corresponding hydroxylated products.


Assuntos
Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Fontes Termais/microbiologia , Metagenoma , Sequência de Aminoácidos/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/isolamento & purificação , Emodina/metabolismo , Mimosina/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Rodopseudomonas/enzimologia , Rodopseudomonas/genética , Homologia de Sequência de Aminoácidos , Especificidade por Substrato/genética , Vietnã
6.
Chinese Journal of Biotechnology ; (12): 4314-4328, 2021.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-921508

RESUMO

5-aminolevulinic acid (5-ALA) plays an important role in the fields of medicine and agriculture. 5-ALA can be produced by engineered Escherichia coli and Corynebacterium glutamicum. We systematically engineered the C4 metabolic pathway of C. glutamicum to further improve its ability to produce 5-ALA. Firstly, the hemA gene encoding 5-ALA synthase (ALAS) from Rhodobacter capsulatus and Rhodopseudomonas palustris were heterologously expressed in C. glutamicum, respectively. The RphemA gene of R. palustris which showed relatively high enzyme activity was selected. Screening of the optimal ribosome binding site sequence RBS5 significantly increased the activity of RphemA. The ALAS activity of the recombinant strain reached (221.87±3.10) U/mg and 5-ALA production increased by 14.3%. Subsequently, knocking out genes encoding α-ketoglutarate dehydrogenase inhibitor protein (odhI) and succinate dehydrogenase (sdhA) increased the flux of succinyl CoA towards the production of 5-ALA. Moreover, inhibiting the expression of hemB by means of sRNA reduced the degradation of 5-ALA, while overexpressing the cysteine/O-acetylserine transporter eamA increased the output efficiency of intracellular 5-ALA. Shake flask fermentation using the engineered strain C. glutamicum 13032/∆odhI/∆sdhA-sRNAhemB- RBS5RphemA-eamA resulted in a yield of 11.90 g/L, which was 57% higher than that of the original strain. Fed-batch fermentation using the engineered strain in a 5 L fermenter produced 25.05 g/L of 5-ALA within 48 h, which is the highest reported-to-date yield of 5-ALA from glucose.


Assuntos
Ácido Aminolevulínico/metabolismo , Corynebacterium glutamicum/metabolismo , Fermentação , Engenharia Metabólica , Rhodobacter capsulatus/enzimologia , Rodopseudomonas/enzimologia
7.
Chem Res Toxicol ; 33(12): 3041-3047, 2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33156617

RESUMO

Inorganic arsenic is one of the most toxic and carcinogenic substances in the environment, but many organisms, including humans, methylate inorganic arsenic to mono-, di-, and trimethylated arsenic metabolites, which the organism can excrete. In humans and other eukaryotic organisms, the arsenite methyltransferase (AS3MT) protein methylates arsenite. AS3MT sequences from eukaryotic organisms group phylogenetically with predicted eubacterial AS3MT sequences, which has led to the suggestion that AS3MT was acquired from eubacteria by multiple events of horizontal gene transfer. In this study, we evaluated whether 55 (out of which 47 were predicted based on protein sequence similarity) sequences encoding putative AS3MT orthologues in 47 species from different kingdoms can indeed methylate arsenic. Fifty-three of the proteins showed arsenic methylating capacity. For example, the predicted AS3MT of the human gut bacterium Faecalibacterium prausnitzii methylated arsenic efficiently. We performed a kinetic analysis of 14 AS3MT proteins representing two phylogenetically distinct clades (Group 1 and 2) that each contain both eubacterial and eukaryotic sequences. We found that animal and bacterial AS3MTs in Group 1 rarely produce trimethylated arsenic, whereas Hydra vulgaris and the bacterium Rhodopseudomonas palustris in Group 2 produce trimethylated arsenic metabolites. These findings suggest that animals during evolution have acquired different arsenic methylating phenotypes from different bacteria. Further, it shows that humans carry two bacterial systems for arsenic methylation: one bacterium-derived AS3MT from Group 1 incorporated in the human genome and one from Group 2 in F. prausnitzii present in the gut microbiome.


Assuntos
Arsênio/metabolismo , Metiltransferases/metabolismo , Animais , Faecalibacterium prausnitzii/enzimologia , Microbioma Gastrointestinal , Humanos , Hydra/enzimologia , Metilação , Metiltransferases/genética , Filogenia , Rodopseudomonas/enzimologia
8.
Biomolecules ; 10(5)2020 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-32397467

RESUMO

Plant type III polyketide synthases produce diverse bioactive molecules with a great medicinal significance to human diseases. Here, we demonstrated versatility of a stilbene synthase (STS) from Pinus Sylvestris, which can accept various non-physiological substrates to form unnatural polyketide products. Three enzymes (4-coumarate CoA ligase, malonyl-CoA synthetase and engineered benzoate CoA ligase) along with synthetic chemistry was practiced to synthesize starter and extender substrates for STS. Of these, the crystal structures of benzoate CoA ligase (BadA) from Rhodopseudomonas palustris in an apo form or in complex with a 2-chloro-1,3-thiazole-5-carboxyl-AMP or 2-methylthiazole-5-carboxyl-AMP intermediate were determined at resolutions of 1.57 Å, 1.7 Å, and 2.13 Å, respectively, which reinforces its capacity in production of unusual CoA starters. STS exhibits broad substrate promiscuity effectively affording structurally diverse polyketide products. Seven novel products showed desired cytotoxicity against a panel of cancer cell lines (A549, HCT116, Cal27). With the treatment of two selected compounds, the cancer cells underwent cell apoptosis in a dose-dependent manner. The precursor-directed biosynthesis alongside structure-guided enzyme engineering greatly expands the pharmaceutical repertoire of lead compounds with promising/enhanced biological activities.


Assuntos
Acil Coenzima A/metabolismo , Aciltransferases/metabolismo , Coenzima A Ligases/metabolismo , Rodopseudomonas/enzimologia , Acil Coenzima A/química , Acil Coenzima A/genética , Apoptose , Vias Biossintéticas , Domínio Catalítico , Linhagem Celular Tumoral , Forma Celular , Sobrevivência Celular , Cristalografia por Raios X , Humanos , Modelos Moleculares , Mutação/genética , Policetídeos/química , Policetídeos/metabolismo
9.
Appl Microbiol Biotechnol ; 104(10): 4397-4406, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32193574

RESUMO

With increasing interest in the diverse properties of organic acids and their application in synthetic pathways, developing biological tools for producing known and novel organic acids would be very valuable. In such a system, organic acids may be activated as coenzyme A (CoA) esters, then modified by CoA-dependent enzymes, followed by CoA liberation by a broad-acting thioesterase. This study has focused on the identification of suitable thioesterases (TE) for utilisation in such a pathway. Four recombinant hotdog-fold TEs were screened with a range of CoA esters in order to identify a highly active, broad spectrum TE. The TesB-like TE, RpaL, from Rhodopseudomonas palustris was found to be able to use aromatic, alicyclic and both long and short aliphatic CoA esters. Size exclusion chromatography, revealed RpaL to be a monomer of fused hotdog domains, in contrast to the complex quaternary structures found with similar TesB-like TEs. Nonetheless, sequence alignments showed a conserved catalytic triad despite the variation in quaternary arrangement. Kinetic analysis revealed a preference towards short-branched chain CoA esters with the highest specificity towards DL-ß-hydroxybutyryl CoA (1.6 × 104 M-1 s-1), which was found to decrease as the acyl chain became longer and more functionalised. Substrate inhibition was observed with the fatty acyl n-heptadecanoyl CoA at concentrations exceeding 0.3 mM; however, this was attributed to its micellar aggregation properties. As a result of the broad activity observed with RpaL, it is a strong candidate for implementation in CoA ester pathways to generate modified or novel organic acids.


Assuntos
Rodopseudomonas/enzimologia , Tioléster Hidrolases/química , Tioléster Hidrolases/metabolismo , Sequência de Aminoácidos , Coenzima A/metabolismo , Cristalografia por Raios X , Cinética , Modelos Moleculares , Pseudomonas aeruginosa/genética , Especificidade por Substrato , Tioléster Hidrolases/classificação
10.
Environ Microbiol ; 22(4): 1397-1408, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32090445

RESUMO

Biological nitrogen fixation is catalyzed by the molybdenum (Mo), vanadium (V) and iron (Fe)-only nitrogenase metalloenzymes. Studies with purified enzymes have found that the 'alternative' V- and Fe-nitrogenases generally reduce N2 more slowly and produce more byproduct H2 than the Mo-nitrogenase, leading to an assumption that their usage results in slower growth. Here we show that, in the metabolically versatile photoheterotroph Rhodopseudomonas palustris, the type of carbon substrate influences the relative rates of diazotrophic growth based on different nitrogenase isoforms. The V-nitrogenase supports growth as fast as the Mo-nitrogenase on acetate but not on the more oxidized substrate succinate. Our data suggest that this is due to insufficient electron flux to the V-nitrogenase isoform on succinate compared with acetate. Despite slightly faster growth based on the V-nitrogenase on acetate, the wild-type strain uses exclusively the Mo-nitrogenase on both carbon substrates. Notably, the differences in H2 :N2 stoichiometry by alternative nitrogenases (~1.5 for V-nitrogenase, ~4-7 for Fe-nitrogenase) and Mo-nitrogenase (~1) measured here are lower than prior in vitro estimates. These results indicate that the metabolic costs of V-based nitrogen fixation could be less significant for growth than previously assumed, helping explain why alternative nitrogenase genes persist in diverse diazotroph lineages and are broadly distributed in the environment.


Assuntos
Carbono/metabolismo , Fixação de Nitrogênio , Nitrogenase/metabolismo , Rodopseudomonas/metabolismo , Ferro/metabolismo , Molibdênio/metabolismo , Nitrogênio/metabolismo , Oxirredução , Rodopseudomonas/enzimologia , Rodopseudomonas/crescimento & desenvolvimento , Vanádio/metabolismo
11.
Biochemistry ; 59(9): 1038-1050, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32058707

RESUMO

The cytochrome P450 superfamily of heme monooxygenases catalyzes important chemical reactions across nature. The changes in the optical spectra of these enzymes, induced by the addition of substrates or inhibitors, are critical for assessing how these molecules bind to the P450, enhancing or inhibiting the catalytic cycle. Here we use the bacterial CYP199A4 enzyme (Uniprot entry Q2IUO2), from Rhodopseudomonas palustris HaA2, and a range of substituted benzoic acids to investigate different binding modes. 4-Methoxybenzoic acid elicits an archetypal type I spectral response due to a ≥95% switch from the low- to high-spin state with concomitant dissociation of the sixth aqua ligand. 4-(Pyridin-3-yl)- and 4-(pyridin-2-yl)benzoic acid induced different type II ultraviolet-visible (UV-vis) spectral responses in CYP199A4. The former induced a greater red shift in the Soret wavelength (424 nm vs 422 nm) along with a larger overall absorbance change and other differences in the α-, ß-, and δ-bands. There were also variations in the ferrous UV-vis spectra of these two substrate-bound forms with a spectrum indicative of Fe-N bond formation with 4-(pyridin-3-yl)benzoic acid. The crystal structures of CYP199A4, with the pyridinyl compounds bound, revealed that while the nitrogen of 4-(pyridin-3-yl)benzoic acid is coordinated to the heme, with 4-(pyridin-2-yl)benzoic acid an aqua ligand remains. Continuous wave and pulse electron paramagnetic resonance data in frozen solution revealed that the substrates are bound in the active site in a form consistent with the crystal structures. The redox potential of each CYP199A4-substrate combination was measured, allowing correlation among binding modes, spectroscopic properties, and the observed biochemical activity.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Proteínas de Bactérias/química , Benzoatos/metabolismo , Sítios de Ligação , Heme/química , Cinética , Ligantes , Modelos Moleculares , Ligação Proteica/fisiologia , Rodopseudomonas/enzimologia , Rodopseudomonas/metabolismo , Especificidade por Substrato
12.
Arch Biochem Biophys ; 683: 108276, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31978400

RESUMO

A Pseudomonas CoA ligase (BadA) biocatalyzed aroyl CoA thioesters used by a downstream N-benzoyltransferase (NDTNBT) in a cascade reaction made aroyl analogs of the anticancer drug paclitaxel. BadA kept the high-cost aroyl CoA substrates at saturation for the downstream NDTNBT by recycling CoA when it was added as the limiting reactant. A deacylated taxane substrate N-debenzoyl-2'-deoxypaclitaxel was converted to its benzoylated product at a higher yield, compared to the converted yield in assays in which the BadA ligase chemistry was omitted, and benzoyl CoA was added as a cosubstrate. The resulting benzoylated product 2'-deoxypaclitaxel was made at 196% over the theoretical yield of product that could be made from the CoA added at 50 µM, and the cosubstrates benzoic acid (100 µM), and N-debenzoyl-2'-deoxypaclitaxel (500 µM) added in excess. In addition, a 2-O-benzoyltransferase (mTBT) was incubated with BadA, aroyl acids, CoA, a 2-O-debenzoylated taxane substrate, and cofactors under the CoA-recycling conditions established for the NDTNBT/BadA cascade. The mTBT/BadA combination also made various 2-O-aroylated products that could potentially function as next-generation baccatin III compounds. These ligase/benzoyltransferase cascade reactions show the feasibility of recycling aroyl CoA thioesters in vitro to make bioactive acyl analogs of paclitaxel precursors.


Assuntos
Alcaloides/química , Antineoplásicos/química , Coenzima A Ligases/metabolismo , Paclitaxel/análogos & derivados , Taxoides/química , Ácido Benzoico/química , Biocatálise , Hidrocarbonetos Aromáticos com Pontes , Ácidos Carboxílicos/química , Catálise , Escherichia coli , Cinética , Paclitaxel/química , Rodopseudomonas/enzimologia , Especificidade por Substrato
13.
Biochim Biophys Acta Bioenerg ; 1861(3): 148140, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31838096

RESUMO

Among the thioredoxin reductase-type ferredoxin-NAD(P)+ oxidoreductase (FNR) family, FNR from photosynthetic purple non­sulfur bacterium Rhodopseudomonas palustris (RpFNR) is distinctive because the predicted residue on the re-face of the isoalloxazine ring portion of the FAD prosthetic group is a tyrosine. Here, we report the crystal structure of wild type RpFNR and kinetic analyses of the reaction of wild type, and Y328F, Y328H and Y328S mutants with NADP+/NADPH using steady state and pre-steady state kinetic approaches. The obtained crystal structure of wild type RpFNR confirmed the presence of Tyr328 on the re-face of the isoalloxazine ring of the FAD prosthetic group through the unique hydrogen bonding of its hydroxyl group. In the steady state assays, the substitution results in the decrease of Kd for NADP+ and KM for NADPH in the diaphorase assay; however, the kcat values also decreased significantly. In the stopped-flow spectrophotometry, mixing oxidized RpFNRs with NADPH and reduced RpFNRs with NADP+ resulted in rapid charge transfer complex formation followed by hydride transfer. The observed rate constants for the hydride transfer in both directions were comparable (>400 s-1). The substitution did not drastically affect the rate of hydride transfer, but substantially slowed down the subsequent release and re-association of NADP+/NADPH in both directions. The obtained results suggest that Tyr328 stabilizes the stacking of C-terminal residues on the isoalloxazine ring portion of the FAD prosthetic group, which impedes the access of NADP+/NADPH on the isoalloxazine ring portions, in turn, enhancing the release of the NADP+/NADPH and/or reaction with electron transfer proteins.


Assuntos
Ferredoxina-NADP Redutase/química , Ferredoxina-NADP Redutase/metabolismo , NADP/metabolismo , Multimerização Proteica , Rodopseudomonas/enzimologia , Tirosina/metabolismo , Sequência de Aminoácidos , Cinética , Modelos Moleculares , Mutação/genética , Oxirredução , Espectrofotometria Ultravioleta , Relação Estrutura-Atividade
14.
J Inorg Biochem ; 203: 110913, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31759265

RESUMO

The cytochrome P450 metalloenzyme (CYP) CYP199A4 from Rhodopseudomonas palustris HaA2 catalyzes the highly efficient oxidation of para-substituted benzoic acids. Here we determined crystal structures of CYP199A4, and the binding and turnover parameters, with different meta-substituted benzoic acids in order to establish which criteria are important for efficient catalysis. When compared to the para isomers, the meta-substituted benzoic acids were less efficiently oxidized. For example, 3-formylbenzoic acid was oxidized with lower activity than the equivalent para isomer and 3-methoxybenzoic acid did not undergo O-demethylation by CYP199A4. The structural data highlighted that the meta-substituted benzoic acids bound in the enzyme active site in a modified position with incomplete loss of the distal water ligand of the heme moiety. However, for both sets of isomers the meta- or para-substituent pointed towards, and was in close proximity, to the heme iron. The absence of oxidation activity with 3-methoxybenzoic acid was assigned to the observation that the CH bonds of this molecule point away from the heme iron. In contrast, in the para isomer they are in an ideal location for abstraction. These findings were confirmed by using the bulkier 3-ethoxybenzoic acid as a substrate which removed the water ligand and reoriented the meta-substituent so that the methylene hydrogens pointed towards the heme, enabling more efficient oxidation. Overall we show relatively small changes in substrate structure and position in the active site can have a dramatic effect on the activity.


Assuntos
Proteínas de Bactérias/química , Benzoatos/química , Sistema Enzimático do Citocromo P-450/química , Oxigenases de Função Mista/química , Proteínas de Bactérias/metabolismo , Benzoatos/metabolismo , Domínio Catalítico , Sistema Enzimático do Citocromo P-450/metabolismo , Heme/química , Heme/metabolismo , Ferro/química , Ferro/metabolismo , Oxigenases de Função Mista/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica , Rodopseudomonas/enzimologia , Especificidade por Substrato
15.
Science ; 365(6458): 1167-1170, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31515393

RESUMO

A comprehensive understanding of protein function demands correlating structure and dynamic changes. Using time-resolved serial synchrotron crystallography, we visualized half-of-the-sites reactivity and correlated molecular-breathing motions in the enzyme fluoroacetate dehalogenase. Eighteen time points from 30 milliseconds to 30 seconds cover four turnover cycles of the irreversible reaction. They reveal sequential substrate binding, covalent-intermediate formation, setup of a hydrolytic water molecule, and product release. Small structural changes of the protein mold and variations in the number and placement of water molecules accompany the various chemical steps of catalysis. Triggered by enzyme-ligand interactions, these repetitive changes in the protein framework's dynamics and entropy constitute crucial components of the catalytic machinery.


Assuntos
Proteínas de Bactérias/química , Domínio Catalítico , Hidrolases/química , Rodopseudomonas/enzimologia , Catálise , Entropia , Cinética , Ligantes , Modelos Moleculares , Conformação Proteica , Multimerização Proteica
16.
Biochemistry ; 58(37): 3880-3892, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31456394

RESUMO

The enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and its central role in capturing atmospheric CO2 via the Calvin-Benson-Bassham (CBB) cycle have been well-studied. Previously, a form II RuBisCO from Rhodopseudomonas palustris, a facultative anaerobic bacterium, was shown to assemble into a hexameric holoenzyme. Unlike previous studies with form II RuBisCO, the R. palustris enzyme could be crystallized in the presence of the transition state analogue 2-carboxyarabinitol 1,5-bisphosphate (CABP), greatly facilitating the structure-function studies reported here. Structural analysis of mutant enzymes with substitutions in form II-specific residues (Ile165 and Met331) and other conserved and semiconserved residues near the enzyme's active site identified subtle structural interactions that may account for functional differences between divergent RuBisCO enzymes. In addition, using a distantly related aerobic bacterial host, further selection of a suppressor mutant enzyme that overcomes negative enzymatic functions was accomplished. Structure-function analyses with negative and suppressor mutant RuBisCOs highlighted the importance of interactions involving different parts of the enzyme's quaternary structure that influenced partial reactions that constitute RuBisCO's carboxylation mechanism. In particular, structural perturbations in an intersubunit interface appear to affect CO2 addition but not the previous step in the enzymatic mechanism, i.e., the enolization of substrate ribulose 1,5-bisphosphate (RuBP). This was further substantiated by the ability of a subset of carboxylation negative mutants to support a previously described sulfur-salvage function, one that appears to rely solely on the enzyme's ability to catalyze the enolization of a substrate analogous to RuBP.


Assuntos
Dióxido de Carbono/química , Rodopseudomonas/química , Rodopseudomonas/enzimologia , Ribulose-Bifosfato Carboxilase/química , Dióxido de Carbono/metabolismo , Cristalização/métodos , Mutação/fisiologia , Estrutura Secundária de Proteína , Rodopseudomonas/genética , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo
17.
J Am Chem Soc ; 141(29): 11540-11556, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31188575

RESUMO

Many enzymes operate through half-of-the sites reactivity wherein a single protomer is catalytically engaged at one time. In the case of the homodimeric enzyme, fluoroacetate dehalogenase, substrate binding triggers closing of a regulatory cap domain in the empty protomer, preventing substrate access to the remaining active site. However, the empty protomer serves a critical role by acquiring more disorder upon substrate binding, thereby entropically favoring the forward reaction. Empty protomer dynamics are also allosterically coupled to the bound protomer, driving conformational exchange at the active site and progress along the reaction coordinate. Here, we show that at high concentrations, a second substrate binds along the substrate-access channel of the occupied protomer, thereby dampening interprotomer dynamics and inhibiting catalysis. While a mutation (K152I) abrogates second site binding and removes inhibitory effects, it also precipitously lowers the maximum catalytic rate, implying a role for the allosteric pocket at low substrate concentrations, where only a single substrate engages the enzyme at one time. We show that this outer pocket first desolvates the substrate, whereupon it is deposited in the active site. Substrate binding to the active site then triggers the empty outer pocket to serve as an interprotomer allosteric conduit, enabling enhanced dynamics and sampling of activation states needed for catalysis. These allosteric networks and the ensuing changes resulting from second substrate binding are delineated using rigidity-based allosteric transmission theory and validated by nuclear magnetic resonance and functional studies. The results illustrate the role of dynamics along allosteric networks in facilitating function.


Assuntos
Hidrolases/química , Hidrolases/metabolismo , Regulação Alostérica , Sítios de Ligação , Catálise , Domínio Catalítico , Cristalografia por Raios X , Entropia , Glicolatos/metabolismo , Hidrolases/genética , Modelos Moleculares , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Multimerização Proteica , Subunidades Proteicas/metabolismo , Rodopseudomonas/enzimologia
18.
Appl Environ Microbiol ; 85(9)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824440

RESUMO

The anoxygenic phototrophic bacterium Rhodopseudomonas palustris produces methane (CH4) from carbon dioxide (CO2) and hydrogen (H2) from protons (H+) when it expresses a variant form of molybdenum (Mo) nitrogenase that has two amino acid substitutions near its active site. We examined the influence of light energy and electron availability on in vivo production of these biofuels. Nitrogenase activity requires large amounts of ATP, and cells exposed to increasing light intensities produced increasing amounts of CH4 and H2 As expected for a phototroph, intracellular ATP increased with increasing light intensity, but there was only a loose correlation between ATP content and CH4 and H2 production. There was a much stronger correlation between decreased intracellular ADP and increased gas production with increased light intensity, suggesting that the rate-limiting step for CH4 and H2 production by R. palustris is inhibition of nitrogenase by ADP. Increasing the amounts of electrons available to nitrogenase by providing cells with organic alcohols, using nongrowing cells, blocking electrons from entering the Calvin cycle, or blocking H2 uptake resulted in higher yields of H2 and, in some cases, CH4 Our results provide a more complete understanding of the constraints on nitrogenase-based production of biofuels.IMPORTANCE A variant form of Mo nitrogenase catalyzes the conversion of CO2 and protons to the biofuels CH4 and H2 A constant supply of electrons and ATP is needed to drive these reduction reactions. The bacterium R. palustris generates ATP from light and has a versatile metabolism that makes it ideal for manipulating electron availability intracellularly. We therefore explored its potential as a biocatalyst for CH4 and H2 production. We found that intracellular ADP had a major effect on biofuel production, more pronounced than the effect caused by ATP. This is probably due to inhibition of nitrogenase activity by ADP. In general, the amount of CH4 produced by the variant nitrogenase in vivo was affected by electron availability much less than was the amount of H2 produced. This study shows the nature of constraints on in vivo biofuel production by variant Mo nitrogenase.


Assuntos
Proteínas de Bactérias/genética , Elétrons , Metabolismo Energético , Hidrogênio/metabolismo , Metano/metabolismo , Nitrogenase/genética , Rodopseudomonas/metabolismo , Proteínas de Bactérias/metabolismo , Molibdênio/metabolismo , Nitrogenase/metabolismo , Rodopseudomonas/enzimologia , Rodopseudomonas/genética
19.
J Biol Chem ; 294(8): 2854-2861, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30578298

RESUMO

Spontaneous formation of isoaspartates (isoDs) often causes protein damage. l-Isoaspartate O-methyltransferase (PIMT) repairs isoD residues by catalyzing the formation of an unstable l-isoaspartyl methyl ester that spontaneously converts to an l-aspartyl residue. PIMTs are widely distributed in all three domains of life and have been studied most intensively in connection with their role in protein repair and aging in plants and animals. Studies of bacterial PIMTs have been limited to Escherichia coli, which has one PIMT. The α-proteobacterium Rhodopseudomonas palustris has three annotated PIMT genes, one of which (rpa2580) has been found to be important for cellular longevity in a growth-arrested state. However, the biochemical activities of these three R. palustris PIMTs are unknown. Here, we expressed and characterized all three annotated PIMT proteins, finding that two of them, RPA0376 and RPA2838, had PIMT activity, whereas RPA2580 did not. RPA0376 and RPA2838 single- and double-deletion mutants did not differ in longevity from WT R. palustris and did not exhibit elevated levels of isoD residues in aged cells. Comparative sequence analyses revealed that RPA2580 belongs to a separate phylogenetic group of annotated PIMT proteins present in the α-proteobacteria. Our results suggest that this group of proteins is not involved in repair of protein isoD residues. In addition, the bona fide bacterial PIMT enzymes may play a different or subtler role in bacterial physiology than previously suggested.


Assuntos
Ácido Isoaspártico/metabolismo , Filogenia , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/química , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/metabolismo , Rodopseudomonas/enzimologia , Sequência de Aminoácidos , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , Homologia de Sequência , Especificidade por Substrato
20.
Biotechnol Lett ; 41(1): 181-191, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30498972

RESUMO

OBJECTIVE: To enhance the thermostability and deregulate the hemin inhibition of 5-aminolevulinic acid (ALA) synthase from Rhodopseudomonas palustris (RP-ALAS) by a computer-aided rational design strategy. RESULTS: Eighteen RP-ALAS single variants were rationally designed and screened by measuring their residual activities upon heating. Among them, H29R and H15K exhibited a 2.3 °C and 6.0 °C higher melting temperature than wild-type, respectively. A 6.7-fold and 10.3-fold increase in specific activity after 1 h incubation at 37 °C was obtained for H29R (2.0 U/mg) and H15K (3.1 U/mg) compared to wild-type (0.3 U/mg). Additionally, higher residual activities in the presence of hemin were obtained for H29R and H15K (e.g., 64% and 76% at 10 µM hemin vs. 27% for wild-type). The ALA titer was increased by 6% and 22% in fermentation using Corynebacterium glutamicum ATCC 13032 expressing H29R and H15K, respectively. CONCLUSION: H29R and H15K showed high thermostability, reduced hemin inhibition and slightly high activity, indicating that these two variants are good candidates for bioproduction of ALA.


Assuntos
Substituição de Aminoácidos , Proteínas de Bactérias/química , Simulação por Computador , Ácido Graxo Sintase Tipo II/química , Hemina/química , Rodopseudomonas/enzimologia , Análise de Sequência de Proteína , Proteínas de Bactérias/genética , Estabilidade Enzimática/genética , Ácido Graxo Sintase Tipo II/genética , Temperatura Alta , Rodopseudomonas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...